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Sound incident onto an abrupt area expansion in an axisymmetric pipe is investigated
analytically and experimentally. The incident sound "eld may synchronize the unsteady
shedding of vorticity at the lip of the expansion to produce an organized train of vortices.
In the presence of a mean #ow, the unsteady vorticity shed from the lip is convected
downstream where it acts as a sink or source of sound, thereby converting acoustic into
vortical energy, or vice versa. An acoustic analogy and a Green function, G, are used to
determine the sound re#ected and transmitted across the area change. One "nds that there is
an optimal Strouhal number at which sound absorption is maximized and that this
absorption can be enhanced by multiple re#ections from the duct ends. In addition, the
appropriate distance to be used in the de"nition of the Strouhal number depends upon the
diameter ratio of the pipe expansion, j"a/b, where a is the radius of the small pipe, and b is
the radius of the larger pipe. For small j, the appropriate length scale is the pipe radius, a;
whereas for j nearly equal to unity the appropriate length scale is the step height b!a.
Predictions are compared with experiment.
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1. INTRODUCTION

Pipework systems of the type used in a car exhaust, or to transport water or natural gas,
frequently involve the propagation of acoustic waves and a mean #ow. At an abrupt
increase in cross-sectional area of the pipe the mean #ow separates, and there may be
a coupling and energy exchange between the acoustic waves and vortical disturbances.

In his pioneering work on aerodynamic sound [1, 2], Lighthill considers the sound
radiated from a region of non-linear #uid motion into an ambient #uid at rest, identifying
the stress tensor, ¹

ij
"ou

i
u
j
#p

ij
!c2od

ij
, as a quadrupole source of aerodynamic sound.

Here o is the #uid density, u
i
is the component of the velocity in the i direction, p

ij
is the

compressive stress tensor, c is the ambient speed of sound and d
ij

is the Kronecker delta. In
practice, however, the data required to calculate Lighthill's source term is di$cult to obtain
either by experiment or analytically, and alternative ways of writing the wave equation have
been sought. After noticing that signi"cant sound generation from steam locomotives is
often accompanied by the formation of large eddies on the edge of the turbulent steam jet,
Powell [3] introduced the concept of vortex sound. He identi"es the Coriolis term, or
vorticity impulse, $ ) (x?u), as the most signi"cant source of sound in low Mach number,
high Reynolds number adiabatic #ows. Here x represents the shed vorticity and
u represents a #ow velocity. This is a very attractive idea because it implies that the acoustic
sources are con"ned to a region in which the vorticity is non-zero. This is a much smaller
region than the one in which Lighthill's stress tensor, ¹

ij
, is non-zero. Moreover, the data

for the vorticity "eld is much easier to come by and can often be obtained from a simple
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analytical model, from computations or from experiment. Powell's justi"cation, however, is
not strict in terms of the acoustic analogy. More rigourous proofs are given by Howe and
Doak [4}8] by reformulating the equations of motion (momentum and continuity) in terms
of #uctuations in the stagnation enthaply, B, rather than #uctuations in either the pressure
or the density. Both Howe and Doak argue that the Powell term, (x?u) is the most
signi"cant source term in the low-speed, high Reynolds number, unheated #ows.

Although Powell originally conceived the concept of vortex sound as a source
description, the phase of its relationship to sound waves is often such that it acts as a sink
rather than a source of sound. Indeed, it is well established that #ows involving separation
and vortex shedding can interact with incident acoustic waves, leading to acoustic
absorption. Bechert [9] lists various devices which exploit this. As long ago as 1916, Borth
[10] found that a throttle could dampen pressure oscillations in a duct. Frequently used
devices for absorbing sound include ori"ce plates and perforated screens, and there vorticity
is generated at the sharp edges of the apertures. When there is no mean #ow, the fraction of
incident energy absorbed depends non-linearly on the oncoming sound and high-amplitude
acoustic waves are required before this mechanism of sound absorption is e!ective [11}14].
However, when there is a mean #ow the sound absorption can be signi"cant even for
modest levels of excitation [15}17].

Whilst interaction between acoustic waves and vortical motion occurs in a wide range of
problems of engineering interest, the in#uence of a mean #ow on the transmission from the
open end of a pipe has received the most attention. This is because of the importance of
determining how much internal noise in a jet pipe of an aeroengine radiates to the far "eld.
Carrier [18] extended Levine and Schwinger's classical result [19] for the radiation of
internal sound from an open-ended pipe, to include the e!ects of the same uniform mean
#ow both inside and outside the pipe. Savkar [20] considered di!erent internal and external
mean #ow velocities. He used an approximation to the Wiener}Hopf kernel and his
solution has no instability waves. Munt [21, 22] obtains an exact solution to this problem.
He applies the Kutta condition at the pipe exit and seeks a causal response to the incident
sound wave. The mean velocity is assumed to be uniform in the jet issuing from the pipe, the
jet being separated from the surrounding #uid by an in"nitesimally thin shear layer. Such
a shear layer is unstable and, according to Munt's theory, its instabilities are excited by an
incident sound wave, leading to an external pressure "eld which grows exponentially with
downstream distance within a region of, approximately, 453 to the downstream axis.

Cargill [23, 24] and Rienstra [25, 26] investigate the low-frequency limit of Munt's
solution in some detail. For very low frequencies, the pressure re#ection coe$cient for
incident plane waves in the jet pipe reduces to the no-#ow re#ection coe$cient!1. Bechert
[9] uses this as the basis of a simpli"ed theory for "nite Mach number, M, and low
Helmholtz number, ka, where a is the radius of the jet pipe and k"2nf /c is the acoustic
wavenumber for disturbances of frequency f. Rienstra [25] notes that there are two distinct
low-frequency limits depending on the relative magnitudes of M and ka. For kaP0 with
small non-zero M, the Strouhal number, ka/nM, tends also to zero and Levine and
Schwinger's no #ow result is recovered. In contrast, in the limit MP0 with small non-zero
ka, the Strouhal number tends to in"nity and a di!erent end correction is predicted. This
too is well con"rmed experimentally [27]. Indeed, there is excellent agreement between
Munt's theoretical re#ection coe$cient [22, 23, 25, 26] and experiments [27, 28].

Munt's theory is for jets with in"nitesimally thin shear layers. Howe [29] overcomes the
di$culties presented by the instability waves of such jets by a di!erent approach, which is
appropriate when the mean shear layer is thick in comparison with the viscous-controlled
radial length scale (l/2nf )1@2 of the unsteady vorticity shed from the nozzle lip (l is the
kinematic viscosity and 2nf is the radian frequency). Howe argues that, for linear
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disturbances, the acoustic source term is $ ) (x?u) [3}8], where x, the vorticity shed at the
jet lip, is chosen to satisfy the Kutta condition and is assumed to be subsequently convected
away by the #ow velocity u. Although Howe's theory applies in the opposite physical limit
from Munt's, i.e., for fairly thick rather than in"nitesimally thin shear layers, the results are
similar [29] if the direct contribution from the instability wave in Munt's solution is
neglected. This may explain why Munt's re#ection coe$cient agrees well with experimental
data for much thicker mean shear layers than the theory is valid [27].

Howe's approach had the advantage that it allows the Kutta condition to be imposed at
a sharp edge in the presence of a mean #ow without the introduction of exponentially large
instability waves. The theory highlights the physics of the sound attenuation: acoustical
energy is converted into kinetic energy of the unsteady vortical #ow. The method has been
applied to a range of problems including sound absorption by perforated plates [15}17, 30],
slits [31}33] and sound production and absorption by Helmholtz resonators [34, 35] in the
presence of either a normal or a tangential mean #ow. It is found to agree well with
experimental results.

In previous papers [36, 37], the problem of sound propagating past a two-dimensional
backward facing step with a superimposed mean #ow was considered. In those papers it was
shown that, for su$ciently low Mach number, the simple analytical model developed by
Howe [4, 15] gives acoustic absorption coe$cients which agree well with experimentally
determined values. In this paper, attention is given to the equivalent axisymmetric problem
of linear absorption of sound by vortex shedding at an abrupt, axisymmetric area expansion
in a pipe (where the pipe radius changes from a, in the smaller pipe, to b in the larger pipe).
Both the Helmholtz number, ka, and the Mach number, M, are assumed low whilst the
Strouhal number, St

a
"af /uN , is of order unity. Howe's theory is extended to this pipe

geometry. Since the Helmholtz number is low, only plane waves propagate far upstream
and far downstream of the expansion. For high Reynolds number #ow, the main e!ects of
viscosity are restricted to the region near the lip of the expansion, where the sound waves
generate coherent unsteady vorticity. The strength of the shed vorticity is determined by
applying the unsteady Kutta condition [38, 39] at the rim of the expansion, following the
approach of Howe [15]. It is assumed that the amplitude of the incident sound wave is
su$ciently small that any non-linearities can be neglected. This implies that strength of the
unsteady shed vorticity depends linearly on the amplitude of the acoustic waves. It then
convects downstream with the mean #ow. The shed vorticity in#uences the unsteady #ow
through the expansion and thus alters the re#ection and transmission of the incident sound
waves. The shed vorticity is found to cause signi"cant sound absorption for a range of
Strouhal numbers. Initially, the absorption of sound is considered at a sudden expansion at
the junction of two semi-in"nite pipes with #ow. In section 3, the analysis is extended to
consider pipes of "nite length. The validity of the theoretical solutions are tested by
comparison with an experiment in section 4.

2. SEMI-INFINITE PIPES

Consider the pipework system shown in Figure 1. Two coaxial, semi-in"nite pipes, of
radii a and b, respectively, are aligned along the x-axis and joined at x"0 (it is convenient
to work in cylindrical polar co-ordinates (x, r, h)). A high Reynolds number (based upon
pipe diameter), low Mach number #ow passes from the smaller to the larger diameter pipe.
The mean #ow separates at the lip of the expansion forming a jet downstream of the
expansion. A low-amplitude incident plane sound wave of frequency, f, propagates from the
left to the right towards the expansion at x"0, where it is partly re#ected and partly



Figure 1. Axisymmetric pipe geometry.
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transmitted into the larger diameter pipe. Unsteady vorticity is shed from the lip of the
expansion by the sound waves and is subsequently convected downstream by the mean
#ow.

Following Doak and Howe [4}6, 8] the stagnation enthaply, B, is used as the dependent
variable:

B"c
p
¹#1

2
Du D2,

where ¹ is the temperature and u is the #uid velocity. The sound "eld for each pipe will be
considered separately and then matching conditions applied across the junction, x"0,
where B@"B!BM (x, r) and LB@/Lx are continuous. Here the overbar denotes the mean
value, and the prime denotes the perturbation. A similar approach has been used to
investigate the transmission of sound through an ori"ce plate [40].

In Region 1 where x(0, it is convenient to express the sound "eld as the superposition of
the incident wave of amplitude B

0
in a pipe with a rigid end at x"0, and a term B* (x, r),

describing the additional contribution due to the pipe opening, i.e.,

B (x, r, t)"B
0

e!i2nf (t!x/c(1#M
1
))
#B

0
e!i2nf (t#x/c(1!M

1
))
#B*(x, r) e!i2nf t for x(0, (1)

where M
1
is the mean #ow Mach number far upstream of the expansion and c is the speed of

sound. In the absence of any heating or #ow inhomogeneities and ignoring the viscous
terms and terms of order M2, both B and B* satisfy a convected wave equation in y(0,
where y"(y, r

0
, h

0
) is the position vector in cylindrical polar co-ordinates:

((1/c) L/Lt#M
1

(L/Ly))2 B*!L2B*/Ly2
i
"0 in y(0. (2)

B* (y, r) depends upon the unsteady #ow in the expansion and hence is coupled to the
disturbances in the larger pipe. B* can be related to this #ow by introducing a Green
function, G

1
(x, t D y, q), de"ned by

((1/c) L/Lt#M
1

(L/Ly))2 G
1
!L2G

1
/Ly2

i
"d (x!y) d(t!q) in y(0, (3)

where d is the Dirac delta function. The choice of boundary conditions for G
1

is arbitrary
and can be chosen to eliminate surface terms. Applying Green's theorem to equations (2)
and (3) leads to

H(!x
1
)B*(x, t)"Pq PS A

LG
1

Lq A2
M

1
c

d
1i

B*#u
iB!B*

LG
1

Ly
i
BdS

i
dq, (4)
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where S is a "xed control surface bounding the region y(0 and H is the Heaviside
function. It is convenient to choose the following set of boundary conditions G

1
:

LG
1
/Lr

0
"0 on r

0
"a, LG

1
/Ly"2 (M

1
/c) LG

1
/Lq on y"0, (5, 6)

inward behaviour as yP!R. (7)

Equation (5) is chosen to eliminate contributions to the surface integral in equation (4) at
the pipe walls (i.e., at r

0
"a), equation (6) eliminates contributions due to B* at y"0

(leaving contributions due only to u) whilst the choice of the far"eld boundary condition is
equation (7) which eliminates contributions from any outgoing acoustic waves to surface
integrals at yP!R. G

1
(x, t D y, q) has inward wave behaviour as y

1
P!R because it is

a reciprocal Green function, whose source is at the observer's position (x, t). Inward wave
behaviour in (y, q) leads to outward propagation in (x, t). With these boundary conditions
equation (4) reduces to

B*(x, t)"!Pq P
a

0
CG1 1

Lu
1

Lq D r
0
dr

0
dq, (8)

where GM
1
(x, r, t D y, r

0
, q)":2n

0
G

1
(x, t D y, q) dh.

The Green function is calculated by using a Bessel series expansions. Write

GM
1
(x, t D y, q)"

=
+
n/0

P a
n
(x, t D y, f @) J

0
( j

n
r
0
/a) ei2nf @q df @, (9)

where J
0

is the Bessel function of order 0 and j
n

denotes the nth zero J
1

i.e.

J
1
( j

n
)"0 for n"0, 1, 2,2 . (10)

This expansion automatically satis"es boundary condition (5). The functions a
n
(x, t D y, f @)

are determined by substitution of the series in equation (9) into equation (3).
The solution follows a very similar approach to that for the equivalent boundary conditions
in the two-dimensional problem [37]. The result is

a
n
(x Dy, h)"

iJ
0
( j

n
r
0
/a)

a2(d
n
)J2

0
( j

n
)
e!i (2n f t!kM

1
(y!x))

]Aeid
n
Dx!y D

!A
kM

1
!d

n
d
n
#kM

1
B e!id

n
(x#y)B for x, y(0. (11)

Substitution of the expansion for B*(y) in equation (8) into equation (1) yields

B(x, r)"B
0
eikx/(1#M

1
)
#B

0
e!ikx/(1!M

1
)
!P

=

~=
P

a

0

GM
1
ei2nf t Lu

1
Lq

(0, r
0
)r
0
dr

0
dq. (12)

It is convenient to introduce a function ; (r
0
) to describe the axial velocity #uctuations

through the junction. Then, since all the #ow parameters have time dependence e!i2nfq, i.e.,
are periodic with frequency f, we have

(Lu
1
/Lq) (0, r

0
, q)"!i2n f;(r

0
)e!i2nfq . (13)
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Substituting into equation (12) gives

B(x, r)"B
0
eikx/ (1#M

1
)
#B

0
e!ikx/(1!M

1
)
#P

=

~=
P

a

0

i2n f GM
1
;(r

0
)ei2nf (t!q)r

0
dr

0
dq. (14)

Equation (14) is a general equation relating the stagnation enthalpy in the "rst pipe to the
(known) Green function and the (as yet unknown) function ; (r

0
). This function is to be

found by considering the #ow in the second pipe (x'0) and using the fact that all #ow
variables are to be continuous at the pipe expansion, x"y"0.

Downstream of the expansion there is vorticity (which is shed from the lip of the
expansion) which acts as an acoustic source term in equation (2). The equation for the sound
"eld in the larger pipe therefore becomes (neglecting terms of order M in this very low Mach
number #ow) [37]

((1/c) L/Lt#M
2

(L/Ly))2 B!L2B/Ly2
i
"(L/Ly

i
) (x?u)

i
, (15)

where M
2
"M

1
a2/b2. Since the mean #ow separates at y"0, M

2
is not the mean #ow

Mach number at the locations near y"0 where the #ow separates, but only as yP!R.
Once again the solution is obtained by introducing a Green function G

2
(x D y), which is

de"ned as

((1/c) L/Lt#M
2

(L/Ly))2G
2
!L2G

2
/Ly2

i
"d (x!y)d(t!q). (16)

The boundary conditions are equivalent to those used in the smaller pipe:

LG
2
/Lr

0
"0 on r

0
"b, LG

2
/Ly"2 (M

2
/c) LG

2
/Lq on y"0, (17, 18)

inward behaviour as yPR (19)

The solution for the Green function in the larger pipe is

GM
2
"P G dh, (20)

GM
2
(x, t D y, q)"

=
+
n/1

P b
n
(x, t Dy, f @)J

0
( j

n
r
0
/b) ei2n f @q df @, (21)

b
n
"

iJ
0
( j

n
r
0
/b)

b2c
n
J2
0
( j

n
)
e!i(2n f t!kM

2
(y!x)) Aeic

n
Dx!y D

#A
kM

2
#c

n
c
n
!kM

2
B eic

n
(x#y)B, (22)

where c
n
"Jk2!( j

n
/b)2. The imaginary part of c

n
is taken as being positive if c

n
is

complex. Applying Green's second theorem and the boundary conditions, as before, gives

B (x, r) e!i2n f t
#PPP G

2
$ ) (x?u)d3ydq"P

=

~=
P

b

0

GM
2

Lu
i

Lq
(0, r

0
) r

0
dr

0
dq

"!i2nf P
=

~=
P

a

0

GM
2
;(r

0
)e!i2nfr r

0
dr

0
dq (23)

in y'0. Note that the integral in the last term in equation (23) is from r
0
"0 to a because

;(r ) is zero on the rigid wall from a to b.

0
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For a mean #ow with a shear layer which is thick in comparison with the viscous-
controlled radial length scale (l/2n f )1@2 of the unsteady vorticity shed from the rim of the
expansion; the vorticity source term $ ) (x?u) can be calculated by following the procedure
of Howe [15, 29]. After linearization,

$ ) (x?u)@"$ ) (x@?u6 )#$ ) (x6 ?u@), (24)

where the overbar denotes the mean value and the prime denotes a perturbation. Howe
assumes that the sound "eld resulting from the second term on the right side of equation
(24) is small in comparison with the "rst term. In the equivalent two-dimensional problem
[36, 37] a numerical solution was used to con"rm the validity of this approximation.

As in the two-dimensional problem [36, 37], it is assumed also that the unsteady vorticity
which is shed from the rim of the expansion forms an in"nitesimally thin shear layer which
convects downstream with mean #ow velocity u

c
"(uN

c
, 0, 0) where uN

c
is typically about half

the jet exist velocity. This assumption is reasonable given the previous assumption that the
acoustic shear layer is thin compared with the mean shear layer. The unsteady vorticity, x@,
is therefore written in the form

x@"pH(y)d (r
0
!a)ei(iy!2n fq)eh , (25)

where p denotes the strength/unit length of the vortex sheet, and again i"2n f /uN
c
, H(y) is

the Heaviside function and eh is a unit vector in the azimuthal direction.
One can substitute for x@ in equation (23) from equation (25) to give, after integration

B (x, r)#pS(x, r)"!i2nf P
=

~=
P

a

0

GM
2
;(r

0
)ei2nf (t!q)r

0
dr

0
dq, (26)

where

S (x, r)"!P P
=
+
n/1

J
0
( j

n
r/b)aj

n
;

0
J
1
( j

n
j) (kM

2
#c

n
)

b3c
n
J2
0
( j

n
) (i2!c2

n
) (c

n
!kM

2
)

](2 (i!c
n
)e!iiM

2
x cos(c

n
x)!c

n
eiix) df @ ei2n ( f!f @)q dq (27)

and j"a/b. The unknown function,;(r
0
), is to be determined from the matching condition

that B (y, r
0
) is continuous across y"0, r

0
(a. Application of this condition to equations

(14) and (26) leads to

B (0, r)"2B
0
#P

a

0

i2n f g
1
; (r

0
)r

0
dr

0
"!P

a

0

i2n fg
2
; (r

0
)r

0
dr

0
!pS (x, r), (28)

where

g
1
(r Dr

0
)"P

=

~=

GM
1
(0, r, t D0, r

0
, q)ei2n f (t!q) dq

and

g
2
(r Dr

0
)"P

=

~=

GM
2

(0, r, t D0, r
0
, q)ei2n f (t!q) dq.

For a general value of p, B(0, r
0
) has a singularity of the form (1!r

0
/a)~1@3 near the edge

r
0
"a. The unsteady Kutta condition requires that the #ow remain "nite everywhere and so
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a speci"c value of p is obtained. In order to apply this condition, ;(r) is separated into
a component B

0
<(r

0
) due to the oncoming sound and a component p=(r

0
) due to the

vorticity by writing

;(r
0
)"B

0
<(r

0
)#p=(r

0
). (29)

Thus, equation (28) becomes

!P
a

0

(g
1
#g

2
)i2nf (B

0
< (r

0
)#p=(r

0
))r

0
dr

0
"2B

0
#pS(r, 0) for r

0
)a. (30)

Equation (30) can be decoupled into two equations (one for the oncoming sound
contribution, and one for the vorticity contribution):

!P
a

0

(g
1
#g

2
) i2n f< (r

0
)r

0
dr

0
"2, (31)

!P
a

0

(g
1
#g

2
)i2n f=(r

0
)r

0
dr

0
"S(r, 0). (32)

The two unknown functions, <(r
0
) and=(r

0
), are now determined by expanding them as

series of Bessel functions and making use of the known form of the singularities in<(r
0
) and

=(r
0
) (< (r

0
), =(r

0
)P(1!r

0
/a)~1@3 as r

0
Pa) by writing

(1!r
0
/a)1@3<(r

0
)"

=
+

m/0

<
m
J
0
( j

m
r
0
/a) (33)

and

(1!r
0
/a)1@3=(r

0
)"

=
+

m/0

=
m
J
0
( j

m
r
0
/a). (34)

The unknown coe$cients,<
m

and=
m
, are found by substituting equations (33) and (34) into

equations (31) and (32), respectively, and using the orthogonality property of the Bessel
functions. Before doing this, however, it is convenient to introduce the following
non-dimensional variables:

r@
0
"r

0
/a, r@"r/a, c@

n
"ac

n
and d@

n
"ad

n
. (35)

Rewriting equations (14) and (26) in terms of these variables makes it apparent that the
re#ection and transmission of the acoustic waves depends upon ia("2n f a/;

c
),

ka("2n f a/c) and the diameter ratio j("a/b).
Substitution of equation (33) into equation (31) then gives

2"
=
+

m,n/0

ia;
c
<
m
J
0
( j

n
r@)

J2
0
( j

n
) (d@

n
) P

1

0

(1!r@
0
)~1@3J

0
( j

n
r@
0
)J

0
( j

m
r@
0
) r@

0
dr@

0

#

=
+

m/n/0

iaj2;
#
<
m
J
0
( j

n
jr@)

J2
0
( j

n
) (c

n
) P

1

0

(1!r@
0
)~1@3 J

0
( j

n
jr@

0
) J

0
( j

m
r@
0
)r@

0
dr@

0
. (36)

After multiplying through by r@J
0
( j

p
r@) and integrating with respect to r@, the orthogonality

of the Bessel functions [41] can be used to show that

=
+

m/0

X
pm
<
m
;

c
"d

p0
for p"0, 1, 2,2 , (37)
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where

X
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"
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n
) P

1

0
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0
)~1@3 J

0
( j

n
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0
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0
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+
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I
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0
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0
)~1@3 J

0
( j

n
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0
)J

0
( j

m
r@
0
)r@
0
dr@

0
(38)

and

I
pn
"P

1

0

J
0
( j

p
r@
0
)J

0
( j

n
jr@

0
)r@
0
dr@

0
. (39)

Likewise substitution for =(r) from equation (34) into equation (32) yields

=
+

m/0

X
pm
=

m
">

p
for p"0, 1, 2,2, (40)

where >
p

is given by

>
p
"!2

=
+
n/0

j3j
n
;
c
J
1
( j

n
j)I

pn
(kaM

2
#c@

n
) (kaM

2
!2c@

n
#ia)

(c@
n
) (i2a2!c@2

n
) (c@

n
!kaM

2
)J2

0
( j

n
)

. (41)

Equations (37) and (40) need to be solved numerically and so truncation is necessary. The
summation over n in X

pm
is truncated at the Nth term, where typically N"500. Extensive

checks were made to ensure that the results were independent of N. The sum over m is
truncated after (M#1) terms, and then the "rst (M#1) equations (37) and (40) are solved
using Crout's factorization with partial pivoting. The integrals are evaluated numerically
using an adaptive integrator which is particularly suitable for oscillating integrands.

Having found the coe$cients <
m
, m"0,2 , M, and =

m
, m"0,2 , M, the Kutta

condition is applied so as to relate the shed vorticity strength, p, to the incident sound wave,
B
0
. After substituting for <(r) and=(r) from equations (33) and (34) into equation (29), the

requirement that ;(r) remains "nite as rPa gives

p"!

B
0

+M
m/0
<
m
J
0
( j

m
)

+M
m/0

=
m
J
0
( j

m
)

. (42)

The stagnation enthalpy far upstream and far downstream of the expansion then follows
from the substitution of the now known function ;(r) into equations (14) and (26). For
low-frequency waves for which kb(j

1
"3)832, all values of d

n
, with the exception of d

0
"k

are imaginary and so the waves decay exponentially. Hence the pipe modes are &&cut-o! ''.
Thus the expressions for the sound "eld, B (x), away from the expansion simplify greatly,
leaving only the n"0 terms and a contribution from the vorticity source term. Far
upstream

B(x)"B
0
eikx/(1#M

1
)
#B

0
e!ikx/(1!M
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0
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0
)~1@3J

0
( j

m
r@
0
)r@
0
dr@

0
. (43)
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Similarly, far downstream

B(x)"eikx/(1#M
2
) cj2

M
+

m/0
A
B

0
<
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#p=

m
1!M

2
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0
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=
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j) (kaM
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n
)

(c@
n
)J2

0
( j

n
) (c@

n
!kaM

2
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. (44)

The last term in equation (44) above describes the enthalpy generated directly by the shed
vorticity. This is a factor (p;

c
/B

0
) M2/ia smaller than the other term. p;

c
/B

0
is at most

5]10~3 and so (p;
c
/B

0
) M2/ia(10~3 for all values of ia greater than 0)02 for the range

of Mach numbers considered. Hence, the last term may be safely neglected.
Whilst the distant sound "elds can be determined directly from equations (43) and (44),

the calculations involved are extremely time consuming. It is found that a greater number of
terms in the series are required than are needed to solve for the vorticity strength, p. Instead
of following this approach, therefore, it is quicker to use a di!erent Bessel series expansion
for; (r

0
), exploiting the fact that, for the vorticity strength calculated in equation (42),;(r

0
)

is now "nite as rPa. Hence, we expand

; (r
0
)"B

0

=
+

m/0

;
m
J
0
( jm r

0
/a) (45)

and substitute into equation (28). Multiplying through by r@
0
J
0

( j
p
r@
0
) and integrating with

respect to r@
0

leads to

1

;
c

d
p0
!ia
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0
j
p

4c@
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"

=
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m/n/0

iaj2;
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<
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J2
0
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) c@
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. (46)

Again this is solved by truncating the sums over m and n at M and N, respectively, and using
the "rst (M#1) equations to determine the coe$cients ;

m
, m"0,2 , M. These

coe$cients have more physical meaning than those in equation (43), since they represent the
di!erent acoustics modes of the pipe. In particular, m"0 is the plane wave mode. Thus, far
upstream of the expansion the sound "eld is given by

B (x)"B
0
(eikx/ (1#M

1
)
#e!ikx/ (1!M

1
) (1!(c;

0
/(1#M

1
))), (47)

whilst far downstream we have

B (x)"B
0
eikx/ (1#M

2
) (cj2;

0
/(1!M

2
)). (48)

Equations (47) and (48) only involve ;
0
, the "rst coe$cient in the expansion for ;(r)

representing the planar mode. ;
0

depends only weakly on the subsequent terms in the
expansion and M"50 is found to be su$ciently large to determine ;

0
to three signi"cant

"gures.
Having determined the distant sound "elds upstream and downstream of the expansion,

the acoustic absorption coe$cient, D, the absorbed energy as a fraction of the incident
sound energy, is calculated:

D"

Incident energy!outgoing energy

Incident energy
"

I
in
A

1
!(I

r
A

1
#I

t
A

2
)

I
in
A

1

, (49)
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where I is the intensity and the su$ces in, r and t denote the incident, re#ected and
transmitted sound waves respectively; and A

1
"na2 and A

2
"nb2 are the areas of the ducts

upstream and downstream of the expansion respectively. The magnitudes of the acoustic
intensities are given by [42] I"D (p@#o6 v ) v@)(v@#(p@v))/(oN cN 2) D, which in terms of the wave
amplitudes is

I
in
"(p@2

in
/oc) (1#M

1
)2"B@2

in
o/c , I

r
"(p@2

r
/oc)(1!M

1
)2"B@2

r
o/c , (50, 51)

I
t
"(p@2

t
/oc) (1#M

2
)2"B@2

t
o/c , (52)

where p@ is the acoustic pressure and B@ is the acoustic stagnation enthalpy. Thus,

D"

B@2
in
!B@2

r
!B@2

t
j2

B@2
in

(53)

"1!K1!A
c

1#M
1
B;0 K

2
! K A

cj2;
0

1!M
2
B K

2
. (54)

D depends mainly upon the non-dimensional frequencies, ia and ka, and only weakly upon
the diameter ratio, j. It is convenient to have just one frequency-dependent variable, the
Strouhal number, St

a
"fa/uN

1
, where f is the frequency in Hertz and uN

1
is the upstream

mean #ow velocity. The results can then be expressed in terms of the Strouhal number, St
a
,

the Mach number, M
1
"uN

1
/c, and the diameter ratio j.

Figure 2 shows the calculated acoustic absorption coe$cient for two joint semi-in"nite
pipes, as a function of the Strouhal number over a range of Mach numbers and for j"0)73.
It is clear that a signi"cant fraction of the incident energy can be absorbed by this
mechanism. Note that, for this value of j and the range of Mach numbers considered, the
maximum acoustic absorption occurs at almost a constant Strouhal number of about 2.
There is negligible acoustic absorption for low and high Strouhal numbers. This
Figure 2. Acoustic absorption coe$cient for two semi-in"nite pipes, j"0)733 2, M"0)015; } } , M"0)025;
** , M"0)05; *, M"0)1.
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low-frequency behaviour may appear, at "rst sight, to contradict the work of Bechert et al.
[43], who "nd signi"cant &&absorption'' at vanishingly low frequencies. The discrepancy can
be explained, however, by noting the di!erent de"nition of the acoustic absorption
coe$cient used by Bechert et al. In their results, the absorbed sound is normalized on the
net sound #owing down the pipe (which tends to zero at low frequencies) rather than on the
incident sound energy as here. Thus at very low frequencies, small acoustic absorption
appears large because of the very small denominator. When their results are renormalized
to give an acoustic absorption coe$cient de"ned in the same way as here, they too "nd
negligible low-frequency sound absorption, for low Mach number #ow.

By di!erentiating equation (54) with respect to ;
0
, one "nds an overall maximum

acoustic absorption, by any mechanism, D
opt

, of 1/(1#j2). It is clearly seen in the numerical
results, displayed in Figure 2, that D

opt
is nearly achieved at a Mach number of 0)01;

a reasonable Mach number in liquids, but low in air. Even at a Mach number of 0)1,
however, a signi"cant amount of acoustic absorption (the maximum is 0)38) is achieved.

The variation of the acoustic absorption with the diameter ratio, j is shown in Figures 3
and 4. Figure 3 shows the calculated acoustic absorption coe$cient, D, as function of
Strouhal number, St

a
, for a "xed Mach number and varying diameter ratio, j; whilst

Figure 4 shows the Strouhal number for maximum acoustic absorption, St
a,max

, as
a function of the diameter ratio, j. For large expansion ratios, i.e., for low values of
j ((0)35), the optimum Strouhal number is virtually independent of j and "xed at
approximately 1. This occurs because the walls of the second pipe have very little e!ect
upon the local behaviour near the expansion lip, when the expansion ratio is large.

In contrast, for small area changes, i.e., large values of j (*0)65), the Strouhal number for
maximum acoustic absorption, St

a,max
, varies greatly with j because the wall of the second

pipe has a large e!ect upon the local behaviour near the expansion lip and hence upon the
vortex shedding. Under such circumstances the relevant length scale is no longer the
diameter of the smaller pipe, but the step height, h"b!a. It is therefore appropriate to
use a di!erent Strouhal number based on the step height, h, rather than upon the smaller
Figure 3. The variation of D with St
a

with varying j.



Figure 4. The variation of St
a,max

with j, M
1
"0)025.

Figure 5. The variation of St
h,max

with j, M
1
"0)025.
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pipe radius, a, to give St
h
, with the Strouhal number for optimum acoustic absorption

occurring at St
h,max

. Thus Figure 4 is replotted as a function of St
h,max

instead of St
a,max

. The
results are shown in Figure 5 where it is seen that the Strouhal number for maximum
acoustic absorption based upon step height, St

h,max
, is virtually independent of j and "xed

at about 0)4 for large values of j.
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3. THE EFFECT OF PIPE RESONANCES

Consider now the more realistic problem of propagation of acoustic waves past a sudden
axisymmetric area expansion with #ow in pipes of "nite length. Just as for the
two-dimensional problem described in Dupère and Dowling [36, 37], the conversion of
sound waves into vortical motion, and hence the acoustic absorption, is dramatically
enhanced near pipe resonances. The analysis follows very similar lines to that presented in
that paper, with re#ection from the pipe ends leading to waves in both pipes incident on the
area change. As for the two-dimensional problem, the additional incoming sound wave has
a linear e!ect upon the forcing term at x"0.

To illustrate the e!ects of pipe resonances, consider the particular geometry illustrated in
Figure 6: an open-ended pipe of radius a and e!ective length ¸ is connected coaxially to
a larger diameter pipe of radius b to form a sudden area expansion at x"0. As before there
is a mean #ow from the smaller to the larger diameter pipe. An incoming plane sound wave
of amplitude C

0
propagates in the negative x-direction towards the area change at x"0. At

the area change the sound wave is partly re#ected and partly transmitted into the smaller
pipe where it propagates in the negative x-direction towards the open end and is re#ected
giving a second incident sound were propagating in the positive x-direction from the open
end (at x"!¸) towards the area change at x"0. The (complex) amplitude of this second
incident sound wave is denoted by B

0
as shown in Figure 6. For su$ciently long pipe

lengths, ¸, and for su$ciently low frequency, this second incident sound wave will also be
planar. As with semi-in"nite pipes, the perturbations in x(0 satisfy equation (14):

B (x, r
0
)"B

0
eikx/ (1#M

1
)
#B

0
e!ikx/(1!M

1
)
#P

a

0

i2n f GM
1
; (r

0
)r
0
dr

0
(55)

whilst equation (26) must be modi"ed to take account of the incident sound wave, C
0
:

B(x, r)#C
0
eikx/(1#M

2
)
#C

0
e!ikx/(1!M

2
)
#pS(x, r)"!i2nf P

a

0

GM
2
;(r

0
)r
0
dr

0
. (56)

As before ;(r) and p are to be determined by applying the condition that B (x, r) is
continuous across x"0 for r)a and by applying the Kutta condition at x"0 and r"a.
This leads to an equation which is entirely equivalent to equation (26) save that the forcing
term B

0
is now replaced by (B

0
!C

0
), where B

0
and C

0
are both complex. This equivalence

can be exploited by using an expansion

; (r
0
)"(B

0
!C

0
)

=
+

m/0

;
m
J
0
( j

m
r/a) (57)

in place of equation (45). The coe$cients;
m
, m"0, 1, 2,2, are identical to those already

calculated for the semi-in"nite pipes. The signi"cance of this is that the solution for any
Figure 6. Finite pipe geometry.
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number of di!erent lengths of pipe (as functions of Mach number, M; Strouhal number, St
a
;

and diameter ratio, j) can be derived from the single calculation for the semi-in"nite pipes
(again as a function of M, St

a
and j) provided the ratio B

0
/C

0
is known. It will now be

shown that this just requires knowledge of the re#ection coe$cient at x"!¸. De"ne this
re#ection coe$cient, R

L
, by B

0
"R

L
¹e2ik¸, where ¹ is the transmitted wave travelling from

right to left in the smaller diameter pipe as shown in Figure 6, and R
L

is the re#ection
coe$cient and ¸ is the length of the smaller diameter pipe in x(0, as shown in Figure 6.
The ratio B

0
/C

0
is determined by applying this re#ection coe$cient at the open end of the

smaller diameter pipe. In the upstream region away from the junction between the pipes,
any high order modes are exponentially small and the remaining plane waves are described
by a modi"ed form of equation (47):

B (x)"B
0
eikx(1#M

1
)
#e!ikx (1!M

1
) AB0

!(B
0
!C

0
)A

c;
0

1#M
1
BB for x@0. (58)

Using this form for B and the re#ection coe$cient at x"!¸ leads to a second equation
relating B

0
and C

0
:

B
0
"R

L
e2ik¸AB0

!(B
0
!C

0
)A

c;
0

1#M
1
BB. (59)

Equation (59) is solved to show that

B
0
!C

0
C

0

"!

1!R
L
e2ik¸

1!R
L
e2ik¸

#R
L
e2ik¸ (c;

0
/(1#M

1
))

. (60)

The re#ection coe$cient is to be determined by consideration of the type of end correction
at x"!¸, either theoretically or by experiment. For large positive x, equation (56)
simpli"es to

B (x)"C
0
e!ikx/(1!M

2
)
#AC0

#(B
0
!C

0
)A

c;
0
j2

1!M
2
BBeikx/(1#M

2
) for xA0 (61)

(cf. equation (48)), and the proportion of incident sound energy which is absorbed is

D
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where (B
0
!C

0
)/C

0
and B

0
/C

0
are determined from equation (60) for a known complex

value of R
L
.

The unknown, ;
0
, is determined from the semi-in"nite pipe calculations and thus

equation (62) can be used to predict the acoustic absorption coe$cient for pipes of any
length, ¸, and Mach number, M

1
, provided the re#ection coe$cient at the inlet, R

L
, is

known.

4. EXPERIMENTAL WORK

The basic layout of the experimental rig is illustrated in Figure 7 which is not drawn to
scale. Ambient air enters a 0)18 m straight cylindrical pipe of internal diameter 96 mm



Figure 7. Experimental layout.
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through a smooth bellmouth. There is an abrupt area expansion into a second coaxial,
cylindrical pipe of internal diameter 130 mm and length 0)2 m. This second pipe exhausts
into a 1)82]1)21]1)21m3 plenum chamber which in turn is connected to an axial blower.
The mean #ow velocity is measured at the inlet using a hot wire to an accuracy of 3%.

In the presented theory, the square of the mean #ow Mach number is assumed small in
comparison with unity. In the experiment the mean #ow Mach number (in the smaller pipe)
is varied from 0)015 to 0)1 (which is the largest Mach number obtainable with this
arrangement) and so such e!ects may certainly be ignored. The theory also requires that the
Stokes layer be thin in comparison with the mean shear layer. Over the experimental
velocity range the mean boundary layer thickness just upstream of the expansion is
estimated to be at least 16% of the smaller pipe radius. The thickness of the Stokes layer,
(l/n f )1@2, describing the unsteady shear layer, on the other hand, is estimated to be at most
0)5 mm (for a frequency of 100 Hz, the lowest frequency of interest). Hence, the unsteady
shear layer is thinner than the mean shear layer by at least a factor of 0)06. Finally, the
additional condition for the neglect of the mean vorticity term requires that the Strouhal
number be larger than approximately 0)2, which is achieved here.

Pressure waves are generated by an arrangement of four loudspeakers in the plenum
chamber (two of which are shown in Figure 7) providing an incident sound wave
propagating towards the expansion from right to left in Figure 7. The loudspeakers are
excited at a single frequency, which is chosen to be su$ciently low that only the plane wave
propagates, i.e., so that kb(j

1
"3)832. This restricts the frequency range to frequencies

below 3)3 kHz. In order to ensure that the higher order modes decay su$ciently rapidly
away form the ends of the pipe, however, a practical limit of 1 kHz is taken. This gives 20 dB
decay over an axial distance of 50 mm in the larger pipe and within 30 mm in the smaller
pipe for the "rst (n"1) mode. Higher modes decay even more rapidly. The Strouhal
number range given by this constraint is for Strouhal numbers, St

a
"fa/uN

1
, less than 10 for

the mean #ow rates considered.
Measurements of the pressure waves in the two pipes are obtained by a technique based

upon the two microphone method [44, 45]. As in the two-dimensional paper [36, 37],
a microphone spacing of 0)1 m is chosen. The microphones are symmetrically positioned
within the pipes (i.e., 4 cm from each end in the smaller diameter pipe, and 5 cm from each
end in the larger diameter pipe) and are thus su$ciently far from the ends of the pipes to
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ensure that the non-planar wave modes (for which n'0) are attenuated by at least 25 dB
compared with their values at the pipe ends. Here the two microphone technique is
simpli"ed because only one frequency waves are propagating and, thus the waves are found
by simply solving a small set of simultaneous equations involving the complex pressure
signals (magnitude and phase). The calibration procedure is the same as described in our
earlier paper [36, 37] in which the microphones were placed very close to each other in
a box and used to measure the same known signal. The phase di!erence between the two
microphones, determined by the calibration procedure was found to be approximately 43,
depending slightly on the frequency, but was found to be repeatable. This gives a maximum
error in the measured amplitudes of 7% which occurs at small values of the acoustic
absorption coe$cient. The results show that the acoustic absorption coe$cient is
signi"cant at most frequencies and so the error in the amplitude is considerably less.

The experimental procedure is as follows. First, the two microphones are calibrated
relative to each other. Next, the two microphones in the smaller diameter pipe are used to
determine the re#ection coe$cient of the bellmouth at the open end of the pipe. The signals
obtained from the microphones are "ltered using anti-aliasing "lters with a cut-o!
frequency of 4 kHz and samples taken for 2 s giving a resolution of 0)5 Hz. The sound waves
in the positive and negative x-directions are then obtained by solving the simultaneous
equations as described above.

First, the re#ection coe$cient, R
L
, for the bellmouth at the open end of the pipe was

deduced as a function of frequency (and hence of Strouhal number). Figure 8 shows results
for the magnitude of R

L
as a function of the Strouhal number from which it is clear that, for

Strouhal numbers greater than 0)4, the magnitude of the re#ection coe$cient, R
L
, is

constant and unity. Results for the phase of the re#ection coe$cient can be expressed in
terms of an end correction:

phase R
L
"n#2kd.
Figure 8. The magnitude of the re#ection coe$cient as a function of St
a
; ], M

1
"0)05; L, M

1
"0)025;

#, M
1
"0)015.



Figure 9. The measured end corrections as a function of St
a
; ], M

1
"0)05; L, M

1
"0)025; #, M

1
"0)015.
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Figure 9 shows the measured values of the end correction, based on a correction to the
length of the straight portion of the pipe, as a function of the Strouhal number. It is clear
that, for St

a
'0)4, d is approximately constant at 1.55a. This di!ers from the familiar

straight pipe open end correction, d+0)6a [19] because of the presence of the bellmouth,
the mean #ow having little e!ect at such high Strouhal numbers in agreement with Peters
et al. [27]. The experimental re#ection coe$cient can therefore be expressed in the form
R

L
"!e2ikd. After substitution into equation (62), this leads to a theoretical prediction for

the sound absorption:

D
L
"1!K 1#A

1#M
1

1!M
2
B A

2cos(k¸
eff

)cj2;
0

2cos(k¸
eff

)(1#M
1
)!eik¸

eff c;
0
B K

2
, (63)

where ¸
eff

"¸#d is the e!ective length of the smaller diameter pipe. This is to be
compared with measurement.

In the large pipe two microphones are used to determine the stagnation enthalpy
re#ection coe$cient, R

a
"(re#ected wave)/C

0
, of the incident sound wave on the area

change. The acoustic absorption coe$cient, D
L
, is de"ned to be the sound energy absorbed

as a fraction of the incident sound energy in the larger pipe:

D
L
"1!DR

a
D2. (64)

There is no net energy #ux in the smaller pipe with the open end.
In taking the readings due care was taken to ensure that the readings lie in the linear

regime. To test for linearity, the amplitude of the sound emitted from the loudspeakers is
varied and new measurements are taken. Throughout the linear regime all pressure
measurements increase in proportion to one another and, hence, the acoustic absorption
coe$cient, D

L
, is independent of incident sound wave amplitude.



Figure 10. D
L
, as a function of St

a
, for j"0)73, and a range of Mach numbers: * analytical; ], M

1
"0)05

experimental reading; L, M
1
"0)025 experimental reading; #, M

1
"0)015 experimental reading.
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Figure 10 shows the calculated and measured acoustic absorption coe$cient, D
L
, as

a function of the Strouhal number based upon the upstream diameter, St
a
"fa/uN

1
, for

a "xed value of the diameter ratio, j"0)73, and a range of Mach numbers. The agreement
between the predictions and the experimental measurements is encouraging. In particular,
the frequency for peak acoustic absorption is very well predicted for all three
Mach numbers tested. The amplitude of the peak acoustic absorption is also predicted to
within 8%.

It is clear that the "nite length acoustic absorption coe$cient, D
L
, has, in general, two

local maxima. First, maxima occur at frequencies corresponding to half-wavelength
resonances of the smaller pipe, giving rise to greatly enhanced acoustic absorption. Since
these frequencies are relatively independent of Mach number, this is more clearly seen in
Figure 11 where the "nite length acoustic absorption coe$cient, D

L
, is replotted as

a function of k¸. At the resonance frequency, k¸"n, the forcing term, (B
0
!C

0
), in

equation (60) becomes maximum and so the strength of the shed vorticity becomes large
giving rise to very e!ective sound absorption. Conversely, when the frequency corresponds
to a quarter wavelength resonance in the "rst pipe, the forcing term, (B

0
!C

0
), becomes

zero, resulting in zero acoustic absorption, which subsequently becomes brie#y negative.
This occurs, however, over a very narrow frequency range as a result of the large
semi-in"nite pipe acoustic absorption and so, although predicted by the theory, it is not
observed in the experimental results. The e!ects of both quarter and half-wavelength
resonance were also noted in the 2-D problem [36, 37]. In that problem, however, the
in"nite pipe acoustic absorption was much less. As a result, small acoustic absorption near
quarter-wavelength resonances was observed in the experiment as well as in the theory.

At the Mach numbers described in this paper, the in"nite pipe results have a distinct peak
(at a Strouhal number of about 2). This gives rise to a second type of maxima, corresponding
to the maximum acoustic absorption for semi-in"nite pipes. Since one maximum is
a function of the speed of sound, and one a function of the #ow speed, it is possible for both



Figure 11. D
L
, as a function of k¸, for j"0)73, and a range of Mach number: * analytical; ], M

1
"0)05

experimental reading; L, M
1
"0)025 experimental reading; #, M

1
"0)015 experimental reading.
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to coincide. This occurs when the pipe resonance, k¸"n, is at a Strouhal number based
upon the upstream radius of 2, i.e., when

M"(1
4
) a/¸ . (65)

For the geometry used in Figures 10 and 11, a/¸"0)2 and this corresponds to a Mach
number of 0)05. The results for this Mach number are included in Figures 10 and 11 where it
is clear that there is only one maximum and it corresponds to almost total acoustic
absorption, D

L
"1. Thus, the best acoustic absorption is achieved by arranging for the pipe

resonance to occur at the Strouhal number for maximum acoustic absorption in
semi-in"nite pipes.

5. CONCLUSIONS

This paper has shown how an acoustic analogy can be applied along with a very simple
model for the shed vorticity to accurately predict the sound absorption by #ow/sound
interaction across a sudden area expansion in axisymmetic pipes.

The magnitude of the diameter ratio, j"a/b, a!ects the appropriate length scale to be
used in the de"nition of the Strouhal number. For small expansion ratios, i.e., j*0)65
the appropriate Strouhal number of St

h
based upon the step height h"b!a. For large

expansion ratios, j)0)3 the image sources have little e!ect and the appropriate Strouhal
number is St

a
based upon the smaller pipe radius a, the optimum occurring at an

approximately constant value of about 2. For intermediate values of j, the optimum
Strouhal number is found to depend upon j. The maximum acoustic absorption depends
upon both the Mach number, M, and the diameter ratio, j.

With sound waves incident from both directions, both far upstream and far downstream,
the conversion of sound energy into unsteady vortical motion can be either enhanced or
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suppressed, depending upon the relative magnitude and phase of incoming soundwaves.
Two maxima occur in the "nite pipe case: one related to the Strouhal number for maximum
acoustic absorption in semi-in"nite pipes, and the other related to half-wavelength pipe
resonance. By suitable choice of Mach number for this geometry (or indeed by suitable
choice of geometry for a given Mach number) it is possible to arrange for both these
maxima to coincide resulting in very high levels of acoustic absorption (almost total
acoustic absorption for this geometry and a Mach number of 0)05).
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